4 research outputs found

    Epicutaneous Sensitization to the Phytocannabinoid β-Caryophyllene Induces Pruritic Inflammation

    Get PDF
    In recent years, there has been increased accessibility to cannabis for recreational and medicinal use. Incidentally, there has been an increase in reports describing allergic reactions to cannabis including exacerbation of underlying asthma. Recently, multiple protein allergens were discovered in cannabis, yet these fail to explain allergic sensitization in many patients, particularly urticaria and angioedema. Cannabis has a rich chemical profile including cannabinoids and terpenes that possess immunomodulatory potential. We examined whether major cannabinoids of cannabis such as cannabidiol (CBD) and the bicyclic sesquiterpene beta-caryophyllene (β-CP) act as contact sensitizers. The repeated topical application of mice skin with β-CP at 10 mg/mL (50 µL) induced an itch response and dermatitis at 2 weeks in mice, which were sustained for the period of study. Histopathological analysis of skin tissues revealed significant edema and desquamation for β-CP at 10 mg/mL. For CBD and β-CP, we observed a dose-dependent increase in epidermal thickening with profound thickening observed for β-CP at 10 mg/mL. Significant trafficking of CD11b cells was observed in various compartments of the skin in response to treatment with β-CP in a concentration-dependent manner. Mast cell trafficking was restricted to β-CP (10 mg/mL). Mouse proteome profiler cytokine/chemokine array revealed upregulation of complement C5/5a (anaphylatoxin), soluble intracellular adhesion molecule-1 (sICAM-1) and IL-1 receptor antagonist (IL-1RA) in animals dosed with β-CP (10 mg/mL). Moreover, we observed a dose-dependent increase in serum IgE in animals dosed with β-CP. Treatment with β-CP (10 mg/mL) significantly reduced filaggrin expression, an indicator of barrier disruption. In contrast, treatment with CBD at all concentrations failed to evoke scratching and dermatitis in mice and did not result in increased serum IgE. Further, skin tissues were devoid of any remarkable features, although at 10 mg/mL CBD we did observe the accumulation of dermal CD11b cells in skin tissue sections. We also observed increased filaggrin staining in mice repeatedly dosed with CBD (10 mg/mL). Collectively, our studies indicate that repeated exposure to high concentrations of β-CP can induce dermatitis-like pathological outcomes in mice

    Proteomics-Based Approach for Detailing the Allergenic Profile of Cannabis Chemotypes

    Get PDF
    Allergic sensitization to cannabis is an emerging public health concern and is difficult to clinically establish owing to lack of standardized diagnostic approaches. Attempts to develop diagnostic tools were largely hampered by the Schedule I restrictions on cannabis, which limited accessibility for research. Recently, however, hemp was removed from the classified list, and increased accessibility to hemp allows for the evaluation of its practical clinical value for allergy diagnosis. We hypothesized that the proteomic profile is preserved across different cannabis chemotypes and that hemp would be an ideal source of plant material for clinical testing. Using a proteomics-based approach, we examined whether distinct varieties of cannabis plant contain relevant allergens of cannabis. Cannabis extracts were generated from high tetrahydrocannabinol variety (Mx), high cannabidiol variety (V1-19) and mixed profile variety (B5) using a Plant Total Protein Extraction Kit. Hemp extracts were generated using other standardized methods. Protein samples were subjected to nanoscale tandem mass spectrometry. Acquired peptides sequences were examined against the Cannabis sativa database to establish protein identity. Non-specific lipid transfer protein (Can s 3) level was measured using a recently developed ELISA 2.0 assay. Proteomic analysis identified 49 distinct potential allergens in protein extracts from all chemotypes. Most importantly, clinically relevant and validated allergens, such as profilin (Can s 2), Can s 3 and Bet v 1-domain-containing protein 10 (Can s 5), were identified in all chemotypes at label-free quantification (LFP) intensities \u3e 106. However, the oxygen evolving enhancer protein 2 (Can s 4) was not detected in any of the protein samples. Similarly, Can s 2, Can s 3 and Can s 5 peptides were also detected in hemp protein extracts. The validation of these findings using the ELISA 2.0 assay indicated that hemp extract contains 30-37 ng of Can s 3 allergen per µg of total protein. Our proteomic studies indicate that relevant cannabis allergens are consistently expressed across distinct cannabis chemotypes. Further, hemp may serve as an ideal practical substitute for clinical testing, since it expresses most allergens relevant to cannabis sensitization, including the validated major allergen Can s 3

    Epicutaneous Sensitization to the Phytocannabinoid β-Caryophyllene Induces Pruritic Inflammation

    No full text
    In recent years, there has been increased accessibility to cannabis for recreational and medicinal use. Incidentally, there has been an increase in reports describing allergic reactions to cannabis including exacerbation of underlying asthma. Recently, multiple protein allergens were discovered in cannabis, yet these fail to explain allergic sensitization in many patients, particularly urticaria and angioedema. Cannabis has a rich chemical profile including cannabinoids and terpenes that possess immunomodulatory potential. We examined whether major cannabinoids of cannabis such as cannabidiol (CBD) and the bicyclic sesquiterpene beta-caryophyllene (β-CP) act as contact sensitizers. The repeated topical application of mice skin with β-CP at 10 mg/mL (50 µL) induced an itch response and dermatitis at 2 weeks in mice, which were sustained for the period of study. Histopathological analysis of skin tissues revealed significant edema and desquamation for β-CP at 10 mg/mL. For CBD and β-CP, we observed a dose-dependent increase in epidermal thickening with profound thickening observed for β-CP at 10 mg/mL. Significant trafficking of CD11b cells was observed in various compartments of the skin in response to treatment with β-CP in a concentration-dependent manner. Mast cell trafficking was restricted to β-CP (10 mg/mL). Mouse proteome profiler cytokine/chemokine array revealed upregulation of complement C5/5a (anaphylatoxin), soluble intracellular adhesion molecule-1 (sICAM-1) and IL-1 receptor antagonist (IL-1RA) in animals dosed with β-CP (10 mg/mL). Moreover, we observed a dose-dependent increase in serum IgE in animals dosed with β-CP. Treatment with β-CP (10 mg/mL) significantly reduced filaggrin expression, an indicator of barrier disruption. In contrast, treatment with CBD at all concentrations failed to evoke scratching and dermatitis in mice and did not result in increased serum IgE. Further, skin tissues were devoid of any remarkable features, although at 10 mg/mL CBD we did observe the accumulation of dermal CD11b cells in skin tissue sections. We also observed increased filaggrin staining in mice repeatedly dosed with CBD (10 mg/mL). Collectively, our studies indicate that repeated exposure to high concentrations of β-CP can induce dermatitis-like pathological outcomes in mice

    Proteomics-Based Approach for Detailing the Allergenic Profile of Cannabis Chemotypes

    No full text
    Allergic sensitization to cannabis is an emerging public health concern and is difficult to clinically establish owing to lack of standardized diagnostic approaches. Attempts to develop diagnostic tools were largely hampered by the Schedule I restrictions on cannabis, which limited accessibility for research. Recently, however, hemp was removed from the classified list, and increased accessibility to hemp allows for the evaluation of its practical clinical value for allergy diagnosis. We hypothesized that the proteomic profile is preserved across different cannabis chemotypes and that hemp would be an ideal source of plant material for clinical testing. Using a proteomics-based approach, we examined whether distinct varieties of cannabis plant contain relevant allergens of cannabis. Cannabis extracts were generated from high tetrahydrocannabinol variety (Mx), high cannabidiol variety (V1-19) and mixed profile variety (B5) using a Plant Total Protein Extraction Kit. Hemp extracts were generated using other standardized methods. Protein samples were subjected to nanoscale tandem mass spectrometry. Acquired peptides sequences were examined against the Cannabis sativa database to establish protein identity. Non-specific lipid transfer protein (Can s 3) level was measured using a recently developed ELISA 2.0 assay. Proteomic analysis identified 49 distinct potential allergens in protein extracts from all chemotypes. Most importantly, clinically relevant and validated allergens, such as profilin (Can s 2), Can s 3 and Bet v 1-domain-containing protein 10 (Can s 5), were identified in all chemotypes at label-free quantification (LFP) intensities > 106. However, the oxygen evolving enhancer protein 2 (Can s 4) was not detected in any of the protein samples. Similarly, Can s 2, Can s 3 and Can s 5 peptides were also detected in hemp protein extracts. The validation of these findings using the ELISA 2.0 assay indicated that hemp extract contains 30–37 ng of Can s 3 allergen per µg of total protein. Our proteomic studies indicate that relevant cannabis allergens are consistently expressed across distinct cannabis chemotypes. Further, hemp may serve as an ideal practical substitute for clinical testing, since it expresses most allergens relevant to cannabis sensitization, including the validated major allergen Can s 3
    corecore